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Abstract: A review of contemporary methods for the intelligent modelling and analysis of atmospheric
processes has been conducted, with a focus on their application in the study of atmospheric pollution and the
extraction of data for simulating atmospheric conditions and scenarios. Earth System Digital Twins (ESDTSs) are
defined and discussed as dynamic virtual replicas that can simulate and predict the development of atmospheric
conditions. Approaches to modelling system dynamics to capture complex interrelationships and processes are
presented. Monte Carlo simulations are employed to address uncertainties in 'what if' scenarios and risk
assessment. The analysis covers genetic algorithms for model optimization, as well as genetic programming and
symbolic regression for extracting interpretable dependencies in atmospheric data. The predictive accuracy and
real-time efficiency of neural networks and extreme learning machines are compared. Additionally, the capabilities
of large language models (LLMs) and multimodal base models — including those developed by NASA and IBM
— for integrating heterogeneous Earth observation data into intelligent atmospheric analysis are examined.
Together, these methods support the development of modern approaches to processing and interpreting data
from satellite and ground-based observations.
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Knrovyoeu dymu: HabnodeHue Ha Semsma, AmmocgbepHu npouecu, JueumanHu 6nusHayu, CucmemHa
OuHamuka, MoHme Kapno cumynayusi, HeepoHHU mpexu, MawuHu 3a ekcmpemHO o6ydeHue, [eHemuyHu
anzopummu, MeHemuyHo npoepamupaHe, onemu esuxkosu modernu

Pe3rome: V3zebpweH e 0630p Ha Cb8PeMeHHU Memodu 3a UHMEIU2eHMHO ModesnupaHe U aHanu3 Ha
ammocgbepHu rpouecu, ¢ hOKyC 8bpXy MPUIOKEHUEMO UM 8 u3criedsaHemo Ha ammMoCchepHOmMO 3aMbpcsieaHe
U usenu4aHemo Ha OaHHU 3a CcuMysnayusi Ha amMoCePHU CbCMOSHUS U cueHapuu. [ecpuHupaHu u
ouckymupaHu ca HueumanHume b6nu3sHauyu Ha 3emHama cucmema (Earth System Digital Twins — ESDTS),
pasenexdaHu kamo OuUHaMUYHU upmyarHu Persuku, crnocobHu 0a cuMmysupam U fpoeHo3upam pa3sumuemo
Ha ammocgepHu ycnosusi. [lpedcmaseHu ca nodxodu 3a moldenupaHe Ha OuHamukama Ha cucmemu ¢ uen
yraesiHe Ha CIIOXXHU 83aUMOBPBL3KU U NPOYecU. 3a cripassiHe ¢ Hecuz2ypHoOCmu 8 ,Kake8o-ako“ cueHapuu U OUeHKa
Ha puckose ca usnonideaHu MoHme Kapno cumynayuu. AHamu3upaHu ca 2eHemu4yHU anzopummu 3a
onmumu3ayusi Ha MoOeslu, KaKmo U 2eHemu4yHO rpospamMupaHe U CUMBOJSIUYHA pezpecusi 3a u3enuvaHe Ha
UHMeprnpemupyemMu 3agucumocmu 8 ammocgepHume OaHHU. [lposedeH e cpasHUmMesieH aHanu3 Mexoy
HEBPOHHU MPEXU U eKCMPEMHU MawuHU 3a 0by4deHue 1o OmMHOWeEHUe Ha msxHama rnpo2HOCMUYHa MoYyHocm u
egekmusHocm 8 peasiHo speme. OceeH mosa, 06CbOeHU ca 8b3MOXHOCMUME Ha 20/iemMume e3ukosu mMooernu
(LLMs) u mynmumodanHume OCHO8HU Modenu, eknyumernHo paspabomeHume om NASA u IBM, 3a
UHMeepupaHe Ha xemepo2eHHU 0aHHU om HabrodeHue Ha 3eMsima 8 UHMeU2eHmMHUs amMocgepeH aHanus.
KonekmueHo me3u memodu rodrioMazam pa3eumuemo Ha CbepeMeHHU nodxodu 3a obpabomka u
UHMepnpemauust Ha daHHU Om cameslumHU U Ha3eMHU HabiloOeHuUsl.
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Introduction

Atmospheric processes including air quality dynamics, climate variability, and pollutant
transport are inherently complex, nonlinear, and subject to significant uncertainties across spatial and
temporal scales. Accurately modeling and forecasting these phenomena require advanced
computational methodologies that integrate observational data with sophisticated modeling
frameworks.

In this review, we synthesize recent progress in intelligent and data-driven approaches for
atmospheric modeling, with a particular focus on methods that leverage Earth observation (EO) data
from both satellite platforms and ground-based monitoring systems [1]. These methods address
critical challenges such as integrating heterogeneous data sources, capturing complex
interdependencies within the atmosphere, and dynamically adapting to evolving environmental
conditions.

Over the past decade, rapid advancements in machine learning, high-performance computing,
and data assimilation have substantially improved the scalability, precision, and interpretability of
atmospheric models [2]. Neural networks (NNs), for example, have demonstrated high accuracy in
applications such as storm trajectory prediction and cloud classification [3]. Large Language Models
(LLMs)—such as NASA’s Galileo and IBM’s TerraMind now support multimodal EO data interpretation
and natural language-based interaction [4, 5]. Meanwhile, Earth System Digital Twins (ESDTSs) have
emerged as next-generation platforms for multiscale simulation of phenomena such as aerosol
transport, planetary boundary layer evolution, and climate impact assessment [1].

In parallel, system dynamics (SD) modeling offers a framework for understanding
feedback-driven systems, while Monte Carlo simulations support probabilistic reasoning and
uncertainty quantification in risk assessment [6]. For real-time applications, Extreme Learning
Machines (ELMs) provide fast and efficient retraining capabilities, making them well-suited for dynamic
atmospheric monitoring [7, 8]. Moreover, evolutionary computation techniques such as genetic
algorithms (GAs) and genetic programming (GP) are being increasingly used to optimize model
architectures and extract interpretable equations from observational data [9, 10].

This review presents a comprehensive overview of these methodologies including digital
twins, system dynamics, Monte Carlo simulations, neural networks, ELMs, genetic algorithms,
symbolic regression via genetic programming, and large language models highlighting their roles,
interactions, and applications in intelligent atmospheric modeling. Conceptual diagrams are included
throughout (see Sections 2.1, 2.2, and 7) to illustrate key components and synergies across methods.

Key Methods for Intelligent Atmospheric Modeling

1. Earth System Digital Twins

An Earth System Digital Twin (ESDT) is a dynamic and interactive digital representation of
the Earth system that integrates observational data and numerical models to replicate past and current
states, predict future scenarios, and simulate the impacts of hypothetical conditions [1]. ESDTs offer a
unified framework for addressing "What-Now", "What-Next", and "What-If" questions by continuously
assimilating data from satellite sensors (e.g., MODIS, AIRS, TROPOMI), ground-based monitoring
networks, and model outputs [1].

Key characteristics of ESDTs include:

e High-fidelity multi-source data integration, enabling accurate and timely representation of

atmospheric phenomena [1].

e Multiscale modeling capabilities, supporting applications ranging from global climate

simulations to local air quality nowcasting [1].

e Hybrid modeling approaches, combining physics-based numerical models with machine
learning emulators to enhance computational efficiency without compromising physical realism

[1].In atmospheric applications, ESDTs have proven particularly valuable for modeling:

e Planetary boundary layer (PBL) dynamics, which influence pollutant dispersion and cloud
formation;

e Aerosol transport, essential for understanding transboundary air pollution and radiative
forcing;

e Urban air quality, especially in complex, fast-changing environments.

Furthermore, ESDTs are increasingly used in support of climate risk assessments, disaster
preparedness, and policy analysis, such as evaluating the impacts of wildfire smoke, urban heat island
effects, and emission control scenarios. Their modular and federated architectures also allow the
interconnection of multiple digital twins (e.g., atmosphere, land, ocean, human systems), enabling
more comprehensive Earth system simulations [1].
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As such, ESDTs represent a paradigm shift in atmospheric science, bridging observation and
simulation while enabling real-time decision support and scenario planning.
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Fig. 1. Component diagram for Earth System Digital Twins, illustrating data assimilation, forecasting,
and scenario exploration for atmospheric applications

2. System Dynamics Modeling
System dynamics (SD) modeling is a computational methodology for analyzing and simulating
the behavior of complex systems over time through the representation of feedback loops, stocks, flows,
and time delays. Originating in control theory and systems thinking, it is particularly well-suited for
capturing the nonlinear and interdependent nature of atmospheric and environmental processes [11].
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Fig. 2. Causal loop diagram illustrating system dynamics for atmospheric processes, showing stocks, flows,
and feedback loops influenced by atmospheric factors
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In the context of atmospheric modeling, SD offers a powerful framework for:

e Characterizing pollutant dispersion, including accumulation and decay under varying
meteorological conditions;

e Simulating hydrological and biogeochemical cycles, influenced by atmospheric variables
such as temperature, precipitation, and solar radiation;

e Assessing long-term impacts of interventions, such as emission control policies or
afforestation programs.

A key strength of SD modeling lies in its ability to represent causal feedback loops, which
govern the evolution of atmospheric systems. For instance, increased urbanization may amplify local
temperatures through the urban heat island effect, which in turn affects energy consumption patterns
and air quality dynamics that can be explicitly modeled through system dynamics diagrams [11].

SD models also facilitate scenario analysis by allowing users to vary structural assumptions, such as
the intensity of feedback mechanisms or the implementation of policy levers, thus enabling
comparative exploration of policy or environmental interventions [11].

By capturing both the structural complexity and temporal evolution of atmospheric systems, system
dynamics modeling complements data-driven approaches and is particularly valuable for long-term
planning, integrated assessments, and the communication of systemic risks to decision-makers [11].

3. Monte Carlo Simulation

Monte Carlo simulation is a statistical method that uses random sampling and repeated
numerical experimentation to model complex systems characterized by uncertainty. In atmospheric
science, it plays a crucial role in quantifying variability, propagating uncertainty, and assessing
probabilistic outcomes in forecasting and environmental risk analysis [6].

In practical terms, Monte Carlo simulations involve generating large ensembles of scenarios
by sampling input variables such as wind speed, temperature, emission rates, or humidity from
specified probability distributions. These simulations are then used to estimate statistical properties of
model outputs, including means, variances, confidence intervals, and exceedance probabilities.

Key applications in atmospheric modeling include:

e Uncertainty quantification in air quality forecasts, where Monte Carlo approaches assess
the likelihood of exceeding pollution thresholds (e.g., PM,.5 or ozone concentrations);

e Probabilistic climate projections, where future atmospheric states are simulated under
varied emission trajectories and model parameterizations;

e Risk assessment of extreme events, such as heatwaves, storm surges, or wildfire smoke
dispersion, where probabilistic modeling helps estimate impact likelihoods and inform
emergency preparedness;

e Error propagation analysis in satellite retrievals, improving the reliability of remote sensing
products by accounting for uncertainties in instrument calibration, cloud masking, or radiative
transfer models.

A notable strength of the Monte Carlo approach is its flexibility and model-agnostic nature,
allowing it to be integrated with both physics-based and machine learning models. For example, a
neural network trained on atmospheric variables can be subjected to Monte Carlo sampling of its
inputs to generate uncertainty-aware forecasts.

While computationally intensive, especially when high-resolution simulations are required, the
method remains a cornerstone of probabilistic modeling in atmospheric sciences, providing essential
support for robust decision-making under uncertainty [6].

Neural Networks and Extreme Learning Machines

1. Neural Networks for Atmospheric Modeling

Neural Networks (NNs) are foundational tools in intelligent atmospheric modeling due to their
ability to learn complex, nonlinear relationships from large datasets. Their architectures particularly
Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) are widely
applied across spatial and temporal domains [3].

e CNNs are highly effective for analyzing satellite imagery (e.g., from MODIS or Sentinel-5P),
enabling tasks like cloud classification, aerosol plume detection, and storm system
identification. Their layered structure captures spatial patterns critical for high-resolution
atmospheric analysis.

e LSTMs, a subclass of Recurrent Neural Networks, are adept at modeling sequential data,
such as pollution trends, temperature variation, or wind speed dynamics, enhancing short-
term forecasting of meteorological conditions.
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e Physics-Informed Neural Networks (PINNs) integrate domain-specific equations (e.g.,
radiative transfer or advection-diffusion equations), improving generalization in data-sparse
conditions while maintaining physical realism.

While NNs deliver high predictive accuracy, their training is computationally intensive,
especially for deep architectures, which can limit their use in real-time applications.

2. Extreme Learning Machines: Speed and Efficiency

Extreme Learning Machines (ELMs) are single-hidden-layer feedforward networks known for
fast, non-iterative training, making them well-suited for time-sensitive atmospheric tasks [7, 8].

Unlike traditional NNs, ELMs randomly initialize input weights and analytically compute output
weights, often achieving 100—1000x faster training times [8]. This efficiency enables applications such as:

e Near real-time air quality forecasting, using streaming satellite data (e.g., PM,.5 estimation
from TROPOMI);
e Anomaly detection in atmospheric variables (e.g., thermospheric density or visibility

degradation) [4];

e Onboard satellite data processing, where computational resources are constrained.

Recent ELM variants incorporate kernel methods and sparsity constraints, improving
robustness against noise and scalability to large Earth observation datasets. While ELMs may
underperform in highly complex feature extraction compared to deep NNs, their simplicity and speed
offer significant advantages in operational settings.

3. Comparison of Neural Networks and Extreme Learning Machines

A comparative analysis of neural networks (NNs) and extreme learning machines (ELMSs)
reveals trade-offs in predictive accuracy and real-time efficiency, particularly relevant for atmospheric
forecasting tasks involving satellite data [3, 7, 8]. NNs generally excel in handling highly complex,
nonlinear patterns, achieving superior accuracy in benchmarks such as storm trajectory prediction
(e.g., RMSE < 0.05). However, their iterative backpropagation training can take hours to days,
hindering real-time deployment. In contrast, ELMs offer comparable or occasionally superior accuracy
in time-series applications like wave energy forecasting (closely analogous to atmospheric wave
propagation), with training speeds 10-100 times faster, enabling efficient processing of streaming
Earth observation data. ELMs also demonstrate strengths in simplicity and robustness for large
datasets, though NNs may outperform in scenarios requiring deep architectures for intricate feature
extraction, such as multispectral image analysis [3].

The following Table 1 summarizes key metrics from recent studies:

Table 1. Comparison of Neural Networks and Extreme Learning Machines

Aspect Neural Networks (NNs) Extreme Learning Machines (ELMs)

Predictive Accuracy High (e.g., outperforms ELMs in|Comparable or better in fast time-series
deep feature tasks; RMSE ~0.05 for|(e.g., superior in wave forecasting
nonlinear dynamics [3]) benchmarks [7])

Training Time Slow (iterative; hours—days for large|Fast (analytical; seconds—minutes, 1000x
datasets) [3] speedup over backprop [8])

Real-Time Efficiency Limited by computation; suitable for|High; ideal for streaming/onboard
offline [3] processing [7, 8]

Suitability for Atmospheric|Complex simulations (e.g., radiative|Operational nowcasting (e.g., aerosol

Applications transfer) [3] visibility) [7]

This comparison highlights the complementary strengths of NNs and ELMs. NNs are ideal for
deep, accuracy-critical modeling, while ELMs offer practical advantages for real-time and resource-
constrained applications [3, 7, 8].

Genetic Algorithms

Genetic Algorithms (GAs) are adaptive, population-based optimization techniques inspired by
natural selection. They operate by evolving a population of candidate solutions through selection,
crossover, and mutation, with the goal of maximizing or minimizing a fitness function [9]. In the context
of atmospheric modeling, GAs serve as powerful tools for hyper-parameter optimization, structural
tuning, and decision support under uncertainty.
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1. Optimization of Atmospheric Models
GAs are particularly valuable for optimizing the parameters of data-driven and hybrid models
such as:
e Neural Networks and Extreme Learning Machines, where they can adjust learning rates,
hidden layer sizes, and activation functions to improve forecast accuracy;
e System Dynamics simulations, where they calibrate feedback coefficients and delay
parameters to better represent real-world atmospheric interactions.
These optimization tasks often involve high-dimensional, non-convex search spaces, where
traditional gradient-based methods may fail or become inefficient. GAs efficiently explore such spaces
using stochastic search and maintain population diversity, thereby avoiding local optima.

2. Practical Applications in Atmospheric Science
Genetic Algorithms have been applied in a variety of atmospheric and Earth observation contexts,
including:
e Satellite scheduling for atmospheric monitoring: optimizing the timing and path of satellite
sensors to improve coverage during dynamic events such as hurricanes or dust storms;
e Air quality modeling: calibrating dispersion models to match observed PM,.5 levels in urban
areas, using both ground station and satellite-derived data;
e Model coupling: facilitating integration between data-driven models and physical process
models (e.g., coupling NN-based plume predictions with chemical transport models).
By enabling robust parameter tuning and model calibration, GAs enhance both the accuracy and
reliability of atmospheric simulations, particularly under variable and uncertain conditions

3. Genetic Programming and Symbolic Regression

Genetic Programming (GP) is an evolutionary algorithm that extends Genetic Algorithms by
evolving computer programs or mathematical expressions, typically represented as tree structures
[10]. A specialized form of GP Symbolic Regression aims to discover explicit, interpretable equations
that best describe the relationships within a given dataset, without predefining the functional form.

4. Interpretability and Model Discovery
Unlike conventional black-box models such as neural networks, GP and symbolic regression
produce transparent, human-readable expressions. This makes them particularly valuable in
atmospheric science, where physical interpretability is essential for understanding causal mechanisms
and integrating findings into existing scientific knowledge or regulatory models.
Key advantages include:
e Discovery of governing equations: GP can infer new formulations of physical processes,
such as pollutant dispersion, turbulent mixing, or atmospheric decay rates.
e Parameterization of subgrid processes: In climate models or weather simulations, GP-
derived equations can serve as data-driven alternatives to empirical parameterizations.
e Model refinement: Symbolic regression can improve or replace empirical relationships used
in satellite retrieval algorithms or air quality models.

5. Applications in Atmospheric Science
Recent applications of GP in the atmospheric domain include:

e Deriving equations for urban pollutant decay based on real-time satellite and ground sensor
data;

e Modeling aerosol dynamics and cloud formation processes using symbolic expressions
trained on remote sensing outputs;

e Creating hybrid physical-ML models where GP provides analytical corrections to numerical
simulations based on observed discrepancies.
In these contexts, GP fosters hypothesis generation, model simplification, and uncertainty

reduction, especially when observational data is sparse or noisy [10].

Large Language Models

Large Language Models (LLMs) and their multimodal extensions—such as Vision-Language
Models (VLMs) represent a transformative class of Al systems capable of processing and generating
natural language, imagery, and other data modalities [2, 4, 5]. In the context of Earth observation and
atmospheric science, these foundation models enable natural language querying, semantic
interpretation, and generative modeling across heterogeneous geospatial datasets.
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1. Capabilities and Roles in Atmospheric Modeling
Recent advances have positioned LLMs as integral components in intelligent atmospheric

modeling pipelines. Key functionalities include:

Natural language interaction: LLMs enable intuitive access to complex atmospheric datasets
(e.g., “Identify regions with high PM,.5 concentrations using Sentinel-5P imagery”), allowing
non-experts to extract insights from EO archives.

Multimodal data fusion: Vision-Language Models can jointly process satellite imagery,
sensor readings, and textual metadata to support cross-modal reasoning.

Generative scenario modeling: LLMs can simulate plausible atmospheric outcomes (e.g.,
aerosol dispersion under hypothetical conditions) based on learned relationships across data
modalities.

Zero-shot and few-shot learning: These models can generalize to new atmospheric tasks
with minimal or no retraining, enabling fast adaptation to emerging events or datasets.

2. Recent Developments and Applications
Several domain-specific LLMs and VLMs have been developed to support atmospheric and

environmental applications:

IBM TerraMind is a generative multimodal model trained on satellite, elevation, and
geospatial data. Its “Thinking-in-Modalities” framework enables pollutant transport simulations
and urban air quality assessments based on textual prompts. Dual-scale representations allow
it to operate effectively in both zero-shot and few-shot regimes [4].

NASA Galileo, developed in collaboration with the Allen Institute for Al, focuses on real-time
EO data analysis. It supports tasks such as anomaly detection, storm tracking, and PM,.;s
hotspot identification using Sentinel-5P and other sources. As an open-source platform,
Galileo is designed for further fine-tuning on atmospheric datasets [5].

3. Scientific and Operational Value

LLMs and VLMs offer substantial benefits for:

Enhancing situational awareness during environmental crises (e.g., wildfires, extreme
pollution episodes);

Supporting decision-makers with natural-language summaries and predictive scenario
outputs;

Augmenting traditional models by generating hypotheses or refining model outputs with
contextual information.

By bridging the gap between technical complexity and human understanding, LLMs

significantly expand the accessibility and interpretability of atmospheric science tools.

4. Interrelationships and Combinations of Methods
The intelligent atmospheric modeling approaches discussed throughout this review exhibit

strong synergies that, when combined, enhance predictive accuracy, computational efficiency, and
practical applicability. The integration of these methods enables hybrid frameworks capable of
addressing the multifaceted challenges inherent in atmospheric science.

Key interrelationships include:

Genetic Algorithms (GAs) effectively optimize parameters and architectures within Neural
Networks, Extreme Learning Machines, and System Dynamics models, leading to improved
forecasting performance and model robustness [9].

Monte Carlo Simulations complement deterministic models such as Digital Twins and
System Dynamics by providing rigorous uncertainty quantification, essential for risk
assessment and scenario evaluation under environmental variability [6].

Large Language Models (LLMs) serve as integrative platforms, fusing outputs from Digital
Twins and machine learning models to facilitate natural language querying, cross-modal data
interpretation, and user-friendly interaction [2, 4, 5].

Genetic Programming (GP) generates interpretable symbolic expressions that enhance
physics-informed modeling and improve the parameterization of Digital Twins, bridging the
gap between data-driven insights and mechanistic understanding [10].

Extreme Learning Machines (ELMs) offer rapid retraining and efficient real-time forecasting,
making them well-suited for dynamic integration within Digital Twin frameworks where timely
updates are critical [7, 8].

These hybridizations not only capitalize on the individual strengths of each method but also

address their limitations, fostering more resilient and adaptable atmospheric models. For instance,
optimizing deep neural network structures with genetic algorithms can reduce overfitting and
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computational costs, while LLMs enable intuitive access to complex model outputs, broadening the
scope of stakeholder engagement [2, 4, 5].

Overall, the collaborative deployment of these intelligent modeling techniques forms a
versatile and powerful toolkit for advancing atmospheric science, enabling more accurate predictions
and responsive environmental management strategies.
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Conclusion

The methods reviewed herein comprising Earth System Digital Twins, system dynamics
modeling, Monte Carlo simulations, neural networks, extreme learning machines, genetic algorithms,
genetic programming, and large language models—constitute a comprehensive and synergistic
framework for intelligent atmospheric modeling. By integrating heterogeneous Earth observation data
from satellite and in situ sources, these approaches enable detailed characterization and forecasting
of complex atmospheric phenomena across multiple spatial and temporal scales [1, 2, 11].

These methodologies demonstrate distinct strengths in capturing nonlinear dynamics,
quantifying uncertainties, and delivering interpretable or near real-time predictive capabilities essential
for operational atmospheric monitoring and risk assessment. Earth System Digital Twins facilitate
high-fidelity replication of atmospheric states and scenario analysis [1]; neural networks and extreme
learning machines provide robust data-driven forecasting and anomaly detection [3, 7, 8, 12]; genetic
algorithms and programming optimize model parameters and derive interpretable relationships [9, 10];
and large language models enhance data fusion and user interaction through natural language
processing and generative modeling [2, 4, 5].

Despite their considerable potential, challenges remain regarding computational demands,
model integration complexity, and the necessity for rigorous validation and calibration to ensure
reliability [3, 7, 8]. Balancing predictive accuracy with computational efficiency is critical, particularly for
real-time applications.

The integration and hybridization of these methods further amplify their effectiveness. For
instance, genetic algorithms can be employed to optimize neural network architectures [9], while large
language models can interface with digital twins to facilitate advanced decision support [1, 2, 4, 5].
Such combinations enhance predictive performance and enable timely responses to environmental
hazards, including air pollution events, wildfire smoke dispersion, and extreme weather occurrences.

Beyond advancing scientific understanding, these intelligent atmospheric modeling
frameworks provide invaluable tools for policy formulation, environmental management, and public
health protection [1, 6, 11]. They underpin the assessment of climate change impacts, support disaster
risk reduction strategies, and inform regulatory and urban planning decisions.

In summary, the continued advancement, integration, and operational deployment of these
sophisticated modeling approaches are imperative for improving our capacity to accurately model and
manage atmospheric processes. These efforts will equip researchers, policymakers, and stakeholders
with enhanced capabilities to address pressing environmental challenges and foster a more resilient
and sustainable future [1, 6, 11].
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